

Layering Protocol Verification: A Pragmatic Approach

Using UVM

Rahul Chauhan (rchauhan@broadcom.com)

Gurpreet Kaire (gpsingh@broadcom.com)
Broadcom, Inc. San Diego, CA - USA

www.broadcom.com

Ravindra Ganti (rkganti@synopsys.com)

Subhranil Deb (sdeb@synopsys.com)
Synopsys, Inc. Mountain View, CA - USA

www.synopsys.com

ABSTRACT

Layering protocols are modeled using layering structures that mirror the protocol layers.

There are significant challenges in modelling verification components for layering protocols

such as (1) reuse, (2) scalability, (3) controllability, and (4)observability. Furthermore, there

may be requirements for complex test scenarios where a great deal of interaction is required

between test sequence execution and response. It is important that the test sequences be provided

with fine grain control of the desired verification components to execute the required complex

test patterns for protocol verification at various layers. In this work, we present a pragmatic

approach using Universal Verification Methodology that we developed for layering protocol

verification to address the challenges mentioned above. This framework provides (1) a rich set of

controls for layering drivers and sequencers to allow interactive complex test pattern generation

and verification, (2) the ability to inject errors at any given layer without having to modify the

underlying sequences, (3) the ability to run any given layer test sequence from a top-level virtual

sequencer, and (4) the ability to perform peer-to-peer and complete protocol stack verification.

Keywords – UVM; protocol; layering; message; packet; frame; sequence; passthru-sequence;

peer-to-peer, LLC; MAC; delayering; ACK.

mailto:rchauhan@broadcom.com
mailto:gpsingh@broadcom.com
http://www.broadcom.com/
mailto:rkganti@synopsys.com
mailto:sdeb@synopsys.com
http://www.synopsys.com/

SNUG 2014 2 Layering Protocol Verification

Table of Contents

I. Introduction .. 3

II. Layering Structure .. 3

III. Adaptive Drivers ... 4

IV. Flexible Virtual Sequencer ... 6

V. Results .. 7

VI. Conclusion .. 8

VII.References .. 8

List of Figures

Figure 1. Layered Protocol Data Flow .. 3

Figure 2. Upstream and Downstream Connection in Layered Architecture 3

Figure 3. Transaction Class Code Block... 4

Figure 4. Driver Class Code Block ... 5

Figure 5. Alt. Driver Class Code Block .. 6

Figure 6. Virtual Sequencer Class Code Block .. 7

Figure 7. Virtual Sequence Class Code Block .. 7

Figure 8. Effort Bars during Execution Phase .. 7

SNUG 2014 3 Layering Protocol Verification

I. Introduction

Communication protocols are modeled

as layers, and these layers are often labelled

using the popular Open systems intercon-

nection model. For transmission, the infor-

mation flows from upper layers downstream

to lower layers and for reception, the infor-

mation flows upstream from lower layers to

upper layers. Each layer services the upper

layer and performs certain tasks based on

the protocol defined for the respective layer.

The information that flows through the vari-

ous layers is subjected to (1) Segmentation,

(2) Encapsulation, (3) Transformation, and

so forth. For example, as illustrated in Fig-

ure 1, user-defined data in the form of mes-

sages can first be segmented into packets.

The packets can then be transformed into

LLC frames. LLC frames can, inturn, be

transformed into MAC frames, then trans-

mitted over a physical interface.

Application Layer

Message

Packets

Link Layer Frame

Media Access Control
Packets

Physical Interface

Application Layer
Message

Packets

Link Layer Frame

Media Access Control
Packets

Figure 1. Layered Protocol Data Flow

While modelling the protocol Verifica-

tion IP, the following items have to be con-

sidered: (1) maintain independent structure

for layers so that each layer can be con-

trolled and observed independently [1], (2)

make drivers adaptive for each layer to be

able to enable/disable selective portions of

the transmission and reception process, (3)

provide flexibility from the top-level virtual

sequencer to execute any underlying se-

quences selectively, and (4) provide the

flexibility to inject errors at any given layer

without having to modify underlying se-

quences.

II. Layering Structure

A reusable and scalable implementation

for verifying layering protocols is achieved

through (1) layering agents, (2) layering

drivers [1], and (3) delayering monitors. In

Figure 2, the drivers of the higher layers are

connected to lower layer pass-through se-

quences for transforming the higher-layer

data stream to the lower-layer data stream.

Monitors are delayered to carry out the in-

verse transformation of the lower-layer data

stream to the higher-layer data stream.

MonitorDriver

Sequence

Sequencer

MonitorDriver

Pass-thru
Sequence

Sequencer

Configuration

MonitorDriver

Pass-thru
Sequence

Sequencer

APP LAYER

LLC LAYER

MAC LAYER

Physical Interface

Configuration

Configuration

Figure 2. Upstream and Downstream Con-

nection in Layered Architecture

SNUG 2014 4 Layering Protocol Verification

Such a setup can verify individual

layers with a peer-to-peer testbench (block

level) and also use the complete protocol

stack to run top-level scenarios.

III. Adaptive Drivers

The challenges lie in the drivers for

handling error injection scenarios for lay-

ered protocols that take care of certain key

aspects of the protocol such as (1) flow con-

trol and (2) internal automatic response gen-

eration to the frames received where higher

layers are insulated from handling such ac-

tivities. Providing control for the driver to

enable and disable certain portions of the

transmission and reception process can ef-

fectively deal with situations such as com-

plex error injection scenarios without break-

ing the driver’s core functionality. For ex-

ample, the LLC Layer in Figure 2. is respon-

sible for sending frames with sequence

numbers in ascending order and also expects

to receive an Acknowledgement from the

other endpoint for the frames transmitted.

When frames are sent, they are buffered and

a timer for each frame is activated and deac-

tivated upon reception of an ACK. If no

ACK is received, the LLC Layer will re-

transmit the frames from the retry buffer

after timeout. Similarly, there might be oth-

er test conditions where a corrupted frame

from an endpoint is sent and no ACK from

the other endpoint is received, in which

case, the corrupted frame is not to be re-

transmitted. This requires fine-grain control

of the driver to disable the timer when send-

ing corrupted frames. In this way, corrupted

frames would not be retransmitted if an

ACK is not received. The code snippet in

Figure 3 shows the control knobs in the

transaction descriptor class that are used by

the adaptive driver.

class llc_frame extends

uvm_sequence_item;

...

rand bit bypass_model; //To Bypass

Model

rand bit wait_before; //Wait Before

driving

rand bit wait_after; //Wait After

driving

...

constraint llc_frame_default_c {

 bypass_model == 0;

 wait_before == 0;

 wait_after == 0;

}

...

endclass : llc_frame

 Figure 3. Transaction Class Code Block

Also, there might be some other test condi-

tions where, (1) wait before receiving a re-

sponse from an endpoint driving a frame, (2)

wait after receiving a response from an end-

point driving a frame, and (3) enable/disable

the driver’s response from the test sequences

to model complex test scenarios. For in-

stance, to model no-response behaviour for

the driver such that no ACKs are sent out for

the frames received, generate a special se-

quence item (configuration frame) from a

test sequence with the constrained property

“bypass_model == 1” which disables the

driver’s response mechanism. In order to put

the driver back into auto-response mode,

generate a special sequence item (configura-

tion frame) from the test

sequence with the constrained property “by-

pass_model==0” which enables the driver’s

response mechanism. The code snippet in

Figure 4 captures key hooks in the driver

describing how to model the desired

behaviour.
class llc_driver extends uvm_driver;

...

local uvm_event llc_frame_rcvd_ev;

SNUG 2014 5 Layering Protocol Verification

virtual task run_phase(uvm_phase);

 fork

 this.tx_driver();

 this.rx_driver();

 join_none

endtask : run_phase

virtual task tx_driver();

 forever begin

seq_item_port.get_next_item(llc_frame)

 //-- Wait Before

 if (llc_frame.wait_before)

this.llc_frame_rcvd_ev.wait_ptrigger();

 //-- Process frame for transmission

 if (!llc_frame.bypass_model)

 this.send_frame();

 else

 this.send_corrupt_frame();

 //-- Wait After

 if (llc_frame.wait_after)

 //-- Clear Existing Event

 if

(this.llc_frame_rcvd_ev.is_on())

 this.llc_frame_rcvd_ev.reset();

this.llc_frame_rcvd_ev.wait_ptrigger();

 ...

 seq_item_port.done();

 end

endtask : tx_driver

task send_frame(llc_frame);

 //-- Convert LLC to MAC

 this.convert_llc2mac(llc_frame);

 //-- Send to MAC passthru-sequence

 this.send_llc2mac(llc_frame);

 //-- Selective Enable Mechanism

 //-- Activate Timer for Flow Control

 if (!llc_frame.bypass_model)

 this.set_timer(llc_frame);

endtask : send_frame

virtual task rx_driver();

 forever begin

 this.frame_rcvd_ev.wait_ptrigger();

 //-- Selective Enable/Disable

Response

 if (!this.bypass_model)

 this.process_rx_frame();

 end

endtask: rx_driver

endclass: llc_driver

Figure 4. Driver Class Code Block

We also used an alternate way to achieve

a similar result for a different higherlayer,

whereby the uvm_sequence class method

get_response() is used to handle transactions

in the sequence. Exceptions that are handled

in the driver are defined in the transaction

class. The driver is implemented in such a

way that after sending the sequence or re-

quest (downstream) transaction, it either

waits for the response (upstream) transaction

or continues based on the user setting of the

expect_response in the transaction class. In a

scenario where the design is expected to

send a response but does not, the loop

doesn’t wait infinitely. A timeout response

transaction is created and sent back to the

sequence indicating the missing response

and helps the testcase to proceed further. For

a case where a response is not set and the

sequence does not wait for the

get_response() method, a user has more con-

trol over the responses and can set the sub-

sequent request transactions accordingly.

The code snippet in Figure 5 captures im-

portant steps within the transaction class,

sequence, and the driver.

class app_tr extends uvm_object;

 bit expect_response;

 bit expect_error;

endclass : app_tr

class app_seq extends uvm_sequence

#(app_tr);

 int msg_cnt;

 task body;

 repeat(3) begin

 `uvm_create(tr);

 if(msg_cnt == 0)

 // Good Tr, Wait for response

 tr.expect_response = 1;

 if(msg_cnt == 1)

SNUG 2014 6 Layering Protocol Verification

// Known Bad Tr, No Wait for

response

 tr.expect_error = 1;

 if(msg_cnt == 2)

 ...

 `uvm_send(tr);

 get_response(rsp);

 end

 endtask : body

endclass : app_seq

class app_drv extends uvm_component;

 task main_phase();

 forever begin

 seq_item_port.get(req);

 send(req);

 ...

 // Checking if response is ex-

pected

 if(req.expect_response) begin

 wait(rsp_recd_ev);

 $cast(rsp, rsp_recd_tr);

 rsp.set_id_info(rsp_recd_tr);

 end

 else

// Send the req back, kind of

dummy

 rsp.set_id_info(req);

 ...

 item_done(rsp);

 end

 endtask : main_phase

endclass : app_drv

Figure 5. Alt. Driver Class Code Block

Apart from this, the driver supported

automatic response generation based on the

current configuration of the agent. This al-

lowed the user to trigger a valid request and

leave the rest to the driver’s intelligence.

Potentially, this could be used to compare

the incoming response from design as well.

IV. Flexible Virtual Sequencer

The virtual sequencer used in this ap-

proach allowed us to manipulate the flow

control as per our requirements. The philos-

ophy behind this approach was to allow the

user to test scenarios which were either di-

rected or random. This flow control was

achieved by monitoring the implementation

ports of each layer in the virtual sequencer.

This gave us visibility into all the transac-

tions at each layer, from either side. The

trick is to create wrap-around tasks for these

monitor port transactions which could be

manipulated to allow the flow control to be

stalled until a certain protocol state is

reached in the simulation.

The virtual sequencer also had the ca-

pability of injecting errors at any level di-

rectly from the sequences. Since we were

following the layering driver [1] approach,

we only had access to higher-layer sequenc-

es from the virtual sequence. In order to

overcome this and allow the user to inject

errors at any level without modifying the

underlying sequence, a virtual sequence was

provided a handle the pass through sequence

of each lower layer. We could then fine-tune

the lower layer packets to inject errors as per

our needs without modifying the flow con-

trol. The error injection technique along

with capturing monitor state information,

provides great flexibility in verifying com-

plex scenarios. The code snippet in Figure 6

describes how the virtual sequencer is

modelled, and the code snippet in Figure 7

describes how the virtual sequence is mod-

eled to achieve the flexible behaviour.

class virtual_sqr extends

uvm_sequencer;

 //Handles for all sequencers

 mac_sequencer mac_sqr;

 llc_sequencer llc_sqr;

 app_sequencer app_sqr;

 //Declare monitor imp ports

 uvm_analysis_imp_mac #(mac_frame,

virtual_sqr) mac_export;

…… llc_export;

…… app_export;

SNUG 2014 7 Layering Protocol Verification

//Use the monitor port to create wait

conditions for the sequences

//Wait task for waiting on one particu-

lar frame_kind from the monitor ports

task wait_for_frame(frame_kind_e

frame_kind);

 wait_for_frame_event(frame_kind);

 ….

 process_frame_for_sequence();

endtask : wait_for_frame

//Implentation port write function im-

plantation.

function write_app();

 if (frame.frame_kind == frame_kind)

 …..

 emit_frame_event();

endfunction : write_app

 function write_llc();

 endfunction : write_llc

function write_mac();

endfunction : write_mac

endclass : virtual sqr

Figure 6. Virtual Sequencer Class Code

Block

class virtual_seq extends uvm_sequence;

 function new();

 get_handle_for_llc_passthru_seq();

 get_handle_for_mac_passthru_seq();

 endfunction : new

 task body();

 //Start application sequence on ap-

plication sequencer

app_seq_1.start(p_sequencer.app_sqr);

app_seq_2.start(p_sequencer.app_sqr);

 //Wait for frame response for second

 application seq by calling parent

 sequencer task

p_sequencer.

wait_for_frame(app_frame_kind);

 //Optionally inject llc error using

 pass through sequence in third

 application sequence

 fork

 llc_passthru_seq.inject_error = 1;

 join_none

 app_seq_3.start(p_sequencer.app_sqr)

endtask : body

endclass : virtual_sequence

Figure 7. Virtual Sequence Class Code

Block

V. Results

Use of these techniques improved the

efficiency of testbench verification and test

case creation, ultimately delivering a modu-

lar, reusable, and robust testbench. The

highlights of this approach were to show

how seamlessly everything fell in place with

good planning and architecture. Figure 8

shows how different development tasks

were shared and executed.

Overall:

o Five test environments were created

– Three peer-to-peer; one each for

stack-to-stack and design.

o ~220 man-days of development time

with three engineers working at three

different locations and in two time

zones.

o Two standard test suites implement-

ed with more than 100 directed and

random sequences.

Figure 8. Effort Bars During Execution

Phase

SNUG 2014 8 Layering Protocol Verification

VI. Conclusion

The motivation for this paper is to

share the concepts and simple techniques

that were implemented and also share the

benefits we achieved with the methodology.

The techniques described in this paper can

be extended to create even more robust and

complex test pattern scenarios. The focus of

this methodology was to have maximum

controllability at every layer of abstraction

while still having an automated test flow.

VII. References

[1] Synopsys, Inc., Beyond UVM: Creating

Truly Reusable Protocol Layering.

[2] Accellera, Universal Verification Methodol-

ogy (UVM) 1.1 User’s Guide.

