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ABSTRACT 

 

 

 

Layering protocols are modeled using layering structures that mirror the protocol layers. 

There are significant challenges in modelling verification components for layering protocols 

such as (1) reuse, (2) scalability, (3) controllability, and (4)observability. Furthermore, there 

may be requirements for complex test scenarios where a great deal of interaction is required 

between test sequence execution and response. It is important that the test sequences be provided 

with fine grain control of the desired verification components to execute the required complex 

test patterns for protocol verification at various layers.  In this work, we present a pragmatic 

approach using Universal Verification Methodology  that we developed for layering protocol 

verification to address the challenges mentioned above. This framework provides (1) a rich set of 

controls for layering drivers and sequencers to allow interactive complex test pattern generation 

and verification, (2) the ability to inject errors at any given  layer without having to modify the 

underlying sequences, (3) the ability to run any given layer test sequence from a top-level virtual 

sequencer, and (4) the ability to perform peer-to-peer and complete protocol stack verification. 
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I. Introduction 

 

Communication protocols are modeled 

as layers, and these layers are often labelled 

using the popular  Open systems intercon-

nection model. For transmission, the infor-

mation flows from upper layers downstream 

to lower layers and for reception, the infor-

mation flows upstream from lower layers to 

upper layers. Each layer services the upper 

layer and performs certain tasks based on 

the protocol defined for the respective layer. 

The information that flows through the vari-

ous layers is subjected to (1) Segmentation, 

(2) Encapsulation, (3) Transformation, and 

so forth. For example, as illustrated in Fig-

ure 1, user-defined data in the form of mes-

sages can first be segmented into packets. 

The packets can then be transformed into 

LLC frames. LLC frames can, inturn, be 

transformed into MAC frames, then trans-

mitted over a physical interface. 

 
Application Layer 

Message

Packets

Link Layer Frame

Media Access Control 
Packets

Physical Interface

Application Layer 
Message

Packets

Link Layer Frame

Media Access Control 
Packets

 

Figure 1. Layered Protocol Data Flow 

 

While modelling the protocol Verifica-

tion IP, the following items have to be con-

sidered: (1) maintain independent structure 

for layers so that each layer can be con-

trolled and observed independently [1], (2)  

make drivers adaptive for each layer to be 

able to enable/disable selective portions of  

the  transmission and reception process, (3) 

provide flexibility from the top-level virtual 

sequencer to execute any underlying se-

quences selectively, and (4) provide the 

flexibility to inject errors at any given layer 

without having to modify underlying se-

quences. 

 

II. Layering Structure 

 

A reusable and scalable implementation 

for verifying layering protocols is achieved 

through (1) layering agents, (2) layering 

drivers [1], and (3) delayering monitors. In 

Figure 2, the drivers of the higher layers are 

connected to lower layer pass-through se-

quences for transforming the higher-layer 

data stream to the lower-layer data stream. 

Monitors are delayered to carry out the in-

verse transformation of the lower-layer data 

stream to the higher-layer data stream.  
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Figure 2. Upstream and Downstream Con-

nection in Layered Architecture 
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Such a setup can verify individual  

layers with a peer-to-peer testbench (block 

level) and also use the complete protocol 

stack to run top-level scenarios. 

III. Adaptive Drivers 

 

The challenges lie in the drivers for  

handling error injection scenarios for lay-

ered protocols that take care of certain key 

aspects of the protocol such as (1) flow con-

trol and (2) internal automatic response gen-

eration to the frames received where higher 

layers are insulated from handling such ac-

tivities. Providing control for the driver to 

enable and disable certain portions of the 

transmission and reception process can ef-

fectively deal with situations such as com-

plex error injection scenarios without break-

ing the driver’s core functionality. For ex-

ample, the LLC Layer in Figure 2. is respon-

sible for sending frames with sequence 

numbers in ascending order and also expects 

to receive an Acknowledgement from the 

other endpoint for the frames transmitted. 

When frames are sent, they are buffered and 

a timer for each frame is activated and deac-

tivated upon reception of an ACK. If no 

ACK is received, the LLC Layer will re-

transmit the frames from the retry buffer 

after timeout.  Similarly, there might be oth-

er test conditions where a corrupted frame 

from an endpoint is sent and no ACK from 

the other endpoint  is received, in which 

case, the corrupted frame is not to be re-

transmitted. This requires fine-grain control 

of the driver to disable the timer when send-

ing corrupted frames. In this way, corrupted 

frames would not be retransmitted if an 

ACK is not received. The code snippet in  

Figure 3 shows the control knobs in the 

transaction descriptor class that are used by 

the adaptive driver.  

 
class llc_frame extends 

uvm_sequence_item; 

... 

rand bit bypass_model; //To Bypass 

Model 

rand bit wait_before;  //Wait Before 

driving 

rand bit wait_after;   //Wait After 

driving 

... 

constraint llc_frame_default_c { 

  bypass_model == 0; 

  wait_before == 0; 

  wait_after == 0; 

} 

... 

endclass : llc_frame 

 

 Figure 3. Transaction Class Code Block  

 

Also, there might be some other test condi-

tions where, (1) wait before receiving a re-

sponse from an endpoint driving a frame, (2) 

wait after receiving a response from an end-

point driving a frame, and (3) enable/disable 

the driver’s response from the test sequences 

to model complex test scenarios. For in-

stance, to model no-response behaviour for 

the driver such that no ACKs are sent out for 

the frames received, generate a special se-

quence item (configuration frame) from a 

test sequence with the constrained property 

“bypass_model == 1” which disables the 

driver’s response mechanism. In order to put 

the driver back into auto-response mode, 

generate a special sequence item (configura-

tion frame) from the test  

sequence with the constrained property “by-

pass_model==0” which enables the driver’s 

response mechanism. The code snippet in 

Figure 4 captures key hooks in the driver 

describing how to model the desired  

behaviour. 
class llc_driver extends uvm_driver; 

... 

local uvm_event llc_frame_rcvd_ev; 
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virtual task run_phase(uvm_phase);  

  fork 

    this.tx_driver(); 

    this.rx_driver(); 

  join_none 

endtask : run_phase 

 

virtual task tx_driver(); 

  forever begin 

    

seq_item_port.get_next_item(llc_frame) 

    //-- Wait Before 

    if (llc_frame.wait_before) 

      

this.llc_frame_rcvd_ev.wait_ptrigger(); 

    //-- Process frame for transmission     

    if (!llc_frame.bypass_model) 

      this.send_frame(); 

    else 

      this.send_corrupt_frame(); 

    //-- Wait After 

    if (llc_frame.wait_after) 

      //-- Clear Existing Event 

      if 

(this.llc_frame_rcvd_ev.is_on()) 

        this.llc_frame_rcvd_ev.reset(); 

      

this.llc_frame_rcvd_ev.wait_ptrigger(); 

    ... 

    seq_item_port.done(); 

  end 

endtask : tx_driver 

 

task send_frame(llc_frame); 

  //-- Convert LLC to MAC 

  this.convert_llc2mac(llc_frame); 

  //-- Send to MAC passthru-sequence 

  this.send_llc2mac(llc_frame); 

  //-- Selective Enable Mechanism 

  //-- Activate Timer for Flow Control 

  if (!llc_frame.bypass_model) 

    this.set_timer(llc_frame); 

endtask : send_frame 

 

virtual task rx_driver(); 

  forever begin 

    this.frame_rcvd_ev.wait_ptrigger(); 

    //-- Selective Enable/Disable 

Response 

    if (!this.bypass_model) 

      this.process_rx_frame(); 

  end 

endtask: rx_driver 

endclass: llc_driver 

  

Figure 4. Driver Class Code Block  

We also used an alternate way to achieve 

a similar result for a different higherlayer, 

whereby the  uvm_sequence class method 

get_response() is used to handle transactions 

in the sequence. Exceptions that are handled 

in the driver are defined in the transaction 

class. The driver is implemented in such a 

way that after sending the sequence or re-

quest (downstream) transaction, it either 

waits for the response (upstream) transaction 

or continues based on the user setting of the 

expect_response in the transaction class. In a 

scenario where the design is expected to 

send a response but does not, the loop 

doesn’t wait infinitely. A timeout response 

transaction is created and sent back to the 

sequence indicating the missing response 

and helps the testcase to proceed further. For 

a case where a response is not set and the 

sequence does not wait for the 

get_response() method, a user has more con-

trol over the responses and can set the sub-

sequent request transactions accordingly. 

The code snippet in Figure 5 captures im-

portant steps within the transaction class, 

sequence, and the driver. 

  
class app_tr extends uvm_object; 

   bit  expect_response; 

   bit  expect_error; 

endclass : app_tr 

 

class app_seq extends uvm_sequence 

#(app_tr); 

  int msg_cnt; 

 

  task body; 

    repeat(3) begin 

      `uvm_create(tr); 

      if(msg_cnt == 0) 

    // Good Tr, Wait for response 

        tr.expect_response = 1;  

      if(msg_cnt == 1)  
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// Known Bad Tr, No Wait for 

response 

        tr.expect_error = 1;  

      if(msg_cnt == 2) 

        ... 

     `uvm_send(tr); 

      get_response(rsp);  

    end 

  endtask : body 

 

endclass : app_seq 

 

class app_drv extends uvm_component; 

  task main_phase(); 

    forever begin 

      seq_item_port.get(req); 

       

      send(req); 

      ... 

 // Checking if response is ex-

pected 

      if(req.expect_response) begin 

        wait(rsp_recd_ev); 

        $cast(rsp, rsp_recd_tr); 

        rsp.set_id_info(rsp_recd_tr); 

      end 

      else 

// Send the req back, kind of 

dummy 

        rsp.set_id_info(req); 

      ... 

      item_done(rsp); 

    end 

  endtask : main_phase 

endclass : app_drv 

 

Figure 5. Alt. Driver Class Code Block  

 

Apart from this, the driver supported 

automatic response generation based on the 

current configuration of the agent. This al-

lowed the user to trigger a valid request and 

leave the rest to the driver’s intelligence. 

Potentially, this could be used to compare 

the incoming response from design as well. 

   

IV. Flexible Virtual Sequencer 

 

The virtual sequencer used in this ap-

proach allowed us to manipulate the flow 

control as per our requirements. The philos-

ophy behind this approach was to allow the 

user to test scenarios which were either di-

rected or random. This flow control was 

achieved by monitoring the implementation 

ports of each layer in the  virtual sequencer. 

This gave us visibility into all the transac-

tions at each layer, from either side. The 

trick is to create wrap-around tasks for these 

monitor port transactions which could be 

manipulated to allow the flow control to be 

stalled until a certain protocol state is 

reached in the simulation. 

  

The virtual sequencer also had the ca-

pability of injecting errors at any level di-

rectly from the sequences. Since we were 

following the layering driver [1] approach, 

we only had access to higher-layer sequenc-

es from the virtual sequence. In order to 

overcome this and allow the user to inject 

errors at any level without modifying the 

underlying sequence, a virtual sequence was 

provided a handle the pass through sequence 

of each lower layer. We could then fine-tune 

the lower layer packets to inject errors as per 

our needs without modifying the flow con-

trol. The error injection technique along 

with capturing monitor state information, 

provides great flexibility in verifying com-

plex scenarios. The code snippet in Figure 6 

describes how the virtual sequencer is  

modelled, and the code snippet in Figure 7  

describes how the virtual sequence is mod-

eled to achieve the flexible behaviour. 

 
class virtual_sqr extends 

uvm_sequencer; 

  //Handles for all sequencers 

  mac_sequencer mac_sqr; 

  llc_sequencer   llc_sqr; 

  app_sequencer app_sqr; 

 

 //Declare monitor imp ports 

  uvm_analysis_imp_mac  #(mac_frame, 

virtual_sqr) mac_export; 

……  llc_export; 

…… app_export; 
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//Use the monitor port to create wait 

conditions for the sequences 

 

//Wait task for waiting on one particu-

lar frame_kind from the monitor ports 

task wait_for_frame(frame_kind_e  

frame_kind); 

  wait_for_frame_event(frame_kind);  

  …. 

  process_frame_for_sequence(); 

endtask : wait_for_frame 

  

//Implentation port write function im-

plantation. 

 

function write_app(); 

   if (frame.frame_kind == frame_kind) 

     …..  

    emit_frame_event(); 

endfunction : write_app 

  

 function write_llc(); 

 endfunction : write_llc 

 

function write_mac(); 

endfunction : write_mac 

 

endclass : virtual sqr 

 

Figure 6. Virtual Sequencer Class Code 

Block  

 
class virtual_seq extends uvm_sequence; 

  

 function new(); 

    get_handle_for_llc_passthru_seq(); 

    get_handle_for_mac_passthru_seq(); 

 endfunction : new      

 

 task body(); 

   //Start application  sequence on ap-

plication sequencer  

   

app_seq_1.start(p_sequencer.app_sqr); 

   

app_seq_2.start(p_sequencer.app_sqr); 

 

   //Wait for frame response for second  

    application seq by calling parent  

    sequencer task 

p_sequencer.  

wait_for_frame(app_frame_kind); 

 

   //Optionally inject llc error using  

    pass  through sequence in third  

   application sequence 

   fork 

     llc_passthru_seq.inject_error = 1; 

   join_none 

  app_seq_3.start(p_sequencer.app_sqr) 

endtask : body 

    

endclass : virtual_sequence 

Figure 7. Virtual Sequence Class Code 

Block 

 

V. Results 

 

Use of these techniques improved the 

efficiency of testbench verification and test 

case creation, ultimately delivering a modu-

lar, reusable, and robust testbench. The 

highlights of this approach were to show 

how seamlessly everything fell in place with 

good planning and architecture. Figure 8 

shows how different development tasks 

were shared and executed.  

 

Overall: 

o Five test environments were created  

– Three peer-to-peer; one each for 

stack-to-stack and design. 

o ~220 man-days of development time 

with three engineers working at three 

different locations and in two time 

zones. 

o Two standard test suites implement-

ed with more than 100 directed and 

random sequences. 

 

 

Figure 8. Effort Bars During Execution 

Phase 
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VI. Conclusion 

 

The motivation for this paper is to 

share the concepts and simple techniques 

that were implemented and also share the 

benefits we achieved with the methodology. 

The techniques described in this paper can 

be extended to create even more robust and 

complex test pattern scenarios. The focus of 

this methodology was to have maximum 

controllability at every layer of abstraction 

while still having an automated test flow. 
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